

SAMXON BRAND ALUMINUM ELECTROLYTIC CAPACITORS PRODUCT SPECIFICATION 規格書

CUSTOMER: (客戶):志盛翔 DATE: (日期):2017-03-04

CATEGORY (品名)	: ALUMINUM ELECTROLYTIC CAPACITORS
DESCRIPTION (型号)	: RT 450V82μF(φ18X30)
VERSION (版本)	: 01
Customer P/N	:
SUPPLIER	:

SUPPL	IER	CUST	ГOMER
PREPARED (拟定)	CHECKED (审核)	APPROVAL (批准)	SIGNATURE (签名)
李婷	王国华		

SPECIFICATION RT SERIES					ALTERN	ALTERNATION HISTORY RECORDS					
Rev.	Date	<u> </u>		Page	Contents	Purpose	Drafter	Approver			
KCV.	Date	Iviaik	1	age	Contents		Dianci	Арріочсі			
	Version		01				Page	1			

М	AN YUE ELECTRONI COMPANY LIMITED				ELECTRO CAPAC SPECIFIO RT SE	TITOR CATION				SA	NX	ON		
Table 1	Product Dimension	s and C	Charac	teristics						U	nit: m	m		
Safety ve	nt for $\geq \Phi$ 6.3 L + α L -1.0 L 5 n	nin 4	↓	20.05		F±0.5	5	$\beta \Phi$ * If it is f	20 : α=1.5; D<20 : β=0 lat rubber, surface.	.5; ΦD≥2	$0: \beta = 1$		the flat rub	ober
N 0.	SAMXON Part No.	WV (Vdc)	Cap. (µF)	Cap. tolerance	Temp. range(°C)	tanδ (120Hz, 20℃)	Leakage Current (µA,2min)	Max Ripple Current at 105°C 100KHz (mA rms)	Load lifetime (Hrs)	Din D×L	nension (mm) F	n 	Sleeve	
1	ERT826M2WL30RR**P	450	82	-20%~+20%	-25~105	0.20	763	1542	5000	18X30	7.5	0.8	PET	

Version 01 Page 2

	Sheet
. Application	4
. Part Number System	4
. Construction	5
. Characteristics	5~10
1 Rated voltage & Surge voltage	
2.2 Capacitance (Tolerance)	
.3 Leakage current	
1.4 tan δ	
4.5 Terminal strength	
A.6 Temperature characteristic	
1.7 Load life test	
4.8 Shelf life test	
4.9 Surge test	
4.10 Vibration	
4.11 Solderability test	
4.12 Resistance to solder heat	
4.13 Change of temperature	
4.14 Damp heat test 4.15 Vent test	
1.16 Maximum permissible (ripple current)	
. List of "Environment-related Substances to be Controlled ('Controlled Substances')"	1 11
Attachment: Application Guidelines	12~15

	Version	01		Page	3
--	---------	----	--	------	---

ELECTROLYTIC CAPACITOR SPECIFICATION RT SERIES

SAMXON

1. Application

This specification applies to polar Aluminum electrolytic capacitor (foil type) used in electronic equipment. Designed capacitor's quality meets IEC60384.

Part Number System 2. 4 5 6 7 89 101112 1314 123 1516 17 тс Ρ EGS 1 н D11 S 0 5 м 1 TOL SAMXON SLEEVE PRODUCT LINE MATERIAL SERIES CAPACITANCE VOLTAGE CASE SIZE TYPE Cap(MFD) Tolerance (%) Code Code Voltage (W.V.) Code Case Size Feature Code SAMXON Product Lin ries ESM EKF ESS EKS EGS EKM EKG EOM EZM EZS 0D (4) Co RR For internal use only 3 B .5 1 4 C Radial bulk 0.1 104 ± 5 J 2.5 0E 5 D 6.3 E 10 G 12.5 1 13 5.5 7 (The product lines 4 0G we have H.A.B.C.D. Ammo Taping 0.22 224 6.3 OJ к E,M or 0,1,2,3,4,5,9) ±10 0K 8 0.33 334 2.0mm Pitch тτ 10 1A 553544AK7L8MNC ±15 L 12.5 1B 2.5mm Pitch τu 0.47 474 1C 16 EGI м 20 1D ±20 105 3.5mm Pitch тν Sleeve Material 1 14 Code 듣증 25 EGK EGE EGD 1E 5 18 3.5 20 22 25 30 34 35 40 42 16 тс PET Р 30 11 5.0mm Pitch 2.2 225 Ν ±30 32 13 18 Lead Cut & Form 35 ERS 3.3 335 1V -40 w ERF 5 Z2 N 25 O 30 P 34 W 35 Q 40 R 42 4 45 6 51 S 3.5 T 76 U 80 8 90 X 00 Z 40 1G СВ-Туре СВ 42 4.7 475 1**M** -20 0 А ER 50 1H ERI СЕ-Туре CE 10 106 57 1L ERD -20 +10 С 63 1J HE HE-Type 45 51 33.5 76 80 90 100 22 226 71 **1**S ER. 75 1**T** 6 -20 +40 ERE × KD-Type ĸD 336 ERC EFA ENP į 33 80 1K 5 85 1R -20 +50 FD-Type FD s 47 476 90 19 ENH 100 2A 4.5 5 455 5 065 4 54 7 07 7 77 7 77 2 T2 1 11 1 11 5 1A 2 12 5 1B 3 13 5 1C 0 20 5 25 5 2J 0 30 5 3A 5 3E -10 0 ЕН-Туре EΗ в 107 100 120 20 5.4 EAP EQP EDP 125 2B PCB Termial 227 -10 +20 220 v 150 2Z 160 2C 10 ETP EHP EUP EKP EEP sw -10 +30 330 337 Q 180 2P 11.5 200 2D Snap-in sx 12 2.5 13 3.5 477 470 12 -10 +50 215 22 т 13.L 20 2; EFF 220 2N sz 2200 228 23 -5 +10 230 EVP EGP EWR EWU EWT EWS EWF EWS EWH EWL EWB VSS Е 250 2E Lug SG 29.5 22000 229 -5 +15 275 2Т F 3 300 21 05 33000 339 -5 +20 310 2R 35 G 50 80 1L 1K 1M 1P 06 315 2F 47000 479 330 2U 0 +20 R Т5 350 2V 100000 10T Screw 360 2X 0 +30 0 т6 VNS VKS VKM VRL VRL 375 2Q 150000 15T 40 50 10 1R 1E 1S 1F 1T 1U 1V 0 +50 385 2Y I. D5 2G 400 220000 22T +5 +15 420 2M z D6 VZS 450 2W 330000 ззт +5 +20 D 500 2H 550 25 1000000 10M +10+50 Y 600 26 2J 1500000 15M 630 +10+30 н 2200000 22M 3300000 33M 5

Version

01

Page

4

ELECTROLYTIC CAPACITOR SPECIFICATION RT SERIES

SAMXON

3. Construction

Single ended type to be produced to fix the terminals to anode and cathode foil, and wind together with paper, and then wound element to be impregnated with electrolyte will be enclosed in an aluminum case. Finally sealed up tightly with end seal rubber, then finished by putting on the vinyl sleeve.

	Component	Material
1	Lead line	Tinned CP wire (Pb Free)
2	Terminal	Aluminum wire
3	Sealing Material	Rubber
4	Al-Foil (+)	Formed aluminum foil
5	Al-Foil (-)	Etched aluminum foil or formed aluminum foil
6	Case	Aluminum case
7	Sleeve	РЕТ
8	Separator	Electrolyte paper

4. Characteristics

Standard atmospheric conditions

Unless otherwise specified, the standard range of atmospheric conditions for making measurements and tests are as follows:

Ambient temperature	:15°C to 35°C
Relative humidity	: 45% to 85%
Air Pressure	: 86kPa to 106kPa

If there is any doubt about the results, measurement shall be made within the following conditions:

Ambient temperature	$: 20^{\circ}C \pm 2^{\circ}C$
Relative humidity	: 60% to 70%
Air Pressure	: 86kPa to 106kPa

Operating temperature range

The ambient temperature range at which the capacitor can be operated continuously at rated voltage See table 1 temperature range.

As to the detailed information, please refer to table 2.

Version	01		5
		U	

ELECTROLYTIC CAPACITOR SPECIFICATION RT SERIES

	ITEM	PERFORMANCE									
	Rated voltage (WV)										
4.1		WV (V.DC)	160	200	220	250	350	400	420	450	500
	Surge voltage (SV)	SV (V.DC)	200	250	270	300	400	450	470	500	550
4.2	Nominal capacitance (Tolerance)	Measuring F Measuring V Measuring T <criteria></criteria>	Shall be within the specified capacitance tolerance.								
4.3	Leakage current	<condition> Connecting t minutes, and <criteria> Refer to Table</criteria></condition>	he cap then, n		-			stor (1	$\mathbf{k}\Omega \pm 1$	0Ω) in	series
4.4	tan δ	See 4.2, Norr < Criteria >	<condition> See 4.2, Norm Capacitance, for measuring frequency, voltage and temperature. <criteria> Refer to Table 1</criteria></condition>								
4.5	Terminal strength	Condition> Tensile Str Fixed the c seconds. Bending Str Fixed the ca 90° within 2 seconds. Diamet 0.5r Over 0.	ength c capacito rength upacito 2~3 sec er of le nm and	or, appl of Term r, applic conds, a ead wire 1 less	ied force and force and ther	to bent bent it fensile (kg	the tern for 90° force N (f) (.51)	ninal (1 ^o to its o	~4 mm original Bendin (k 2.5	from th positio	e rubbe n withii
		<criteri< b=""> No notic</criteri<>		changes	s shall b	e found	, no bre	eakage o	or loose	ness at	the term

Varaian	01		PADE	6
---------	----	--	------	---

ELECTROLYTIC CAPACITOR SPECIFICATION RT SERIES

		<condition></condition>			\sim		m:		
		STEP	Testing Tem		-		Time	1 .1.1	
		1				Time to reach thermal equilibrium Time to reach thermal equilibrium			
		2	-40(-2	/				-	
		3	20 ± 2			ne to reac			
		4	105			ne to reac			
		5	20	±2	Tin	ne to reac	h therma	l equilibr	rium
4.6	Temperature characteristi cs	more than 8 tin b. In step 5, t more than the	an δ shall be w	fied value tithin the l	limit of It	em 4.4T	he leakag	e curren	t shall not
		Working Volt (V)		200	250	350	400	450	500
		Z-25°C/Z+20	°C 3	3	3	5	5	6	6
		For capacitance		_	-	-	-	-	
		Por capacitane	e value > 1000		-				/Z+20℃.
		Capacitance, tai	δ and imped		1			I Z-40 C	Z +20 C.
		<condition></condition>							
	Load	According to II 105°C ± 2 with DC and ripple product should result should m	h DC bias volta peak voltage be tested after	ge plus th shall not 16 hours i	e rated rij exceed	pple curre the rated	ent for Ta working	able 1. (7 voltage)	Гhe sum o) Then th
4.7	Load life	According to II 105°C ±2 with DC and ripple product should result should m <criteria></criteria>	h DC bias volta peak voltage be tested after neet the followi	ge plus the shall not 16 hours i ng table:	e rated rij exceed recoverin	pple curre the rated g time at	ent for Ta working	able 1. (7 voltage)	Гhe sum o) Then th
4.7		According to II $105^{\circ}C \pm 2$ with DC and ripple product should result should m Criteria> The characteri	h DC bias volta peak voltage be tested after neet the followi stic shall meet	ge plus th shall not 16 hours i ng table: the follow	e rated rij exceed recoverin	pple curre the rated g time at	ent for Ta working atmosphe	able 1. (7 voltage)	Гhe sum o) Then th
4.7	life	According to II $105^{\circ}C \pm 2$ with DC and ripple product should result should m <criteria></criteria> The characteri Leakage	h DC bias voltage peak voltage be tested after neet the following stic shall meet e current	ge plus th shall not 16 hours r ng table: the follow Value	e rated rij exceed recoverin <u>ving requi</u> in 4.3 sha	pple curre the rated g time at <u>irements.</u> all be sati	ent for Ta working atmosphe	able 1. (7 voltage)	Гhe sum o) Then th
4.7	life	According to II $105^{\circ}C \pm 2$ with DC and ripple product should result should m <criteria></criteria> The characteri Leakage Capacita	h DC bias volta peak voltage be tested after neet the followi stic shall meet	ge plus th shall not 16 hours i ng table: the follow Value Within	e rated rij exceed recoverin $\frac{1}{1000}$ require in 4.3 sha $\pm 20\%$ of	pple curre the rated g time at irements. all be sati	ent for Ta working atmosphe sfied value.	able 1. (7 voltage) eric cond	The sum o Then th itions. Th
4.7	life	According to II $105^{\circ}C \pm 2$ with DC and ripple product should result should m Criteria> The characteri Leakage Capacita tan δ	h DC bias voltage peak voltage be tested after neet the following stic shall meet e current ance Change	ge plus th shall not 16 hours r ng table: the follow Value Within Not mo	e rated rip exceed recovering recovering in 4.3 sha $\pm 20\%$ core than 2	pple curre the rated g time at irements. all be sati	ent for Ta working atmosphe sfied value. he specif	able 1. (7 voltage) eric cond	The sum o Then th itions. Th
4.7	life	According to II $105^{\circ}C \pm 2$ with DC and ripple product should result should m <criteria></criteria> The characteri Leakage Capacita	h DC bias voltage peak voltage be tested after neet the following stic shall meet e current ance Change	ge plus th shall not 16 hours r ng table: the follow Value Within Not mo	e rated rip exceed recovering recovering in 4.3 sha $\pm 20\%$ core than 2	pple curre the rated g time at irements. all be sati	ent for Ta working atmosphe sfied value. he specif	able 1. (7 voltage) eric cond	The sum o Then th itions. Th

Version

01

SAMXON

8

Page

	<u> </u>		1
		<criteria></criteria>	
			meet the following requirements.
	Shelf	Leakage current	Value in 4.3 shall be satisfied
4.8	life	Capacitance Change	Within $\pm 20\%$ of initial value.
4.0	test	tan δ	Not more than 200% of the specified value.
	test	Appearance	There shall be no leakage of electrolyte.
		Remark: If the capacitors ar	e stored more than 1 year, the leakage current may
			ge through about 1 k Ω resistor, if necessary.
		<condition></condition>	
		Applied a surge voltage to t	he capacitor connected with a $(100 \pm 50)/C_R (k\Omega)$ resistor.
			sitted to 1000 cycles, each consisting of charge of $30 \pm 5s$,
		followed discharge of 5 min	
		The test temperature shall	
		C _R :Nominal Capacitance	(µ F)
	Surge	<criteria></criteria>	
4.9	test	Leakage current	Not more than the specified value.
		Capacitance Change	Within $\pm 15\%$ of initial value.
		tan δ	Not more than the specified value.
		Appearance	There shall be no leakage of electrolyte.
		Attention:	
			age at abnormal situation only. It is not applicable to such
		over voltage as often applie	
		<condition></condition>	
	Vibration test	perpendicular directions. Vibration frequency r Peak to peak amplitud Sweep rate Mounting method: The capacitor with diameter in place with a bracket.	-
4.10		4mm or le	
4.10		<criteria></criteria>	

ELECTROLYTIC CAPACITOR SPECIFICATION RT SERIES

	г					
		<condition></condition>		41.1		
		The capacitor shall be tes		-		
	Solderability test	Soldering temperature		: 245±3°C		
		Dipping depth	: 2mm	,		
4.11		Dipping speed	: 25±2.5n	nm/s		
	lest	Dipping time	: 3±0.5s			
		<criteria></criteria>		20.50/ 0.1 0		
		Coating quality		um of 95% of the surfac	e being	
			immerse	a		
		<condition></condition>				
		Terminals of the capac	citor shall be immerse	d into solder bath at		
		260 ± 5 °C for 10 ± 1 sec	onds or $400 \pm 10^{\circ}$ C fc	$r3_{-0}^{+1}$ seconds to 1.5~2.0	mm from the	
		body of capacitor.		-0		
	Resistance to	, i	ll be left under the nor	mal temperature and no	rmal humidity	
4.12	solder heat	for $1 \sim 2$ hours before n		F		
	test	<criteria></criteria>				
		Leakage current	Not more than t	ne specified value.		
		Capacitance Change	Within $\pm 10\%$ c			
		tan δ	Not more than t	ne specified value.		
		Appearance	Appearance There shall be no leakage of electrolyte.			
		<condition></condition>				
			rding to IEC60384-4N	lo 4 7methods canacito	or shall be	
		Temperature Cycle:According to IEC60384-4No.4.7methods, capacitor shall be placed in an oven, the condition according as below:				
		Temperature Time				
		(1)+20°C		≤3 Minutes		
		(2)Rated low temperative	ature (-40°°) (-25°°)	30 ± 2 Minutes		
	Change of	(3)Rated high temper	. , , , ,	30 ± 2 Minutes 30 ± 2 Minutes		
4.13	temperature		· · · · · ·	30 ± 2 Minutes		
	test	(1) to $(3)=1$ cycle, to	tal 5 cycle			
		<criteria></criteria>	ast the following rag	iromont		
		The characteristic shall m Leakage current	Not more than th		コ	
		· · · · · ·		<u>^</u>	-	
		tan δ	Not more than th		-	
		Appearance	There shall be no	leakage of electrolyte.		
		<condition></condition>				
		Humidity Test:				
		According to IEC60384		1		
		be exposed for 500 ± 8 hours in an atmosphere of $90 \sim 95\%$ R H .at				
		40 ± 2 °C, the characteri	stic change shall mee	the following requiren	nent.	
	Decent					
4.14	Damp heat	<criteria></criteria>			-, l	
	test	Leakage current	Not more than the s		_	
		Capacitance Change	Within $\pm 20\%$ of in		_	
		tan δ	Not more than 120%	6 of the specified value.		
		Appearance	There shall be no le	akage of electrolyte.		
L	1					

Version	01	Page	9

Version

01

ELECTROLYTIC CAPACITOR SPECIFICATION RT SERIES

10

Page

4.15	Vent test	<condition> The following test only apple with vent. D.C. test The capacitor is connected current selected from below <table 3=""> Diameter (mm) DC (22.4 or less) Over 22.4 Criteria> The vent shall operate with pieces of the capacitor and/or</table></condition>	with its p table is a <u>Current (A</u> 1 10 no dange	oolarity reve applied.	ersed to a I	DC power sou	rce. Then a
4.16	Maximum permissible (ripple current)	<condition> The maximum permissible at 120Hz and can be appl Table-1 The combined value of D rated voltage and shall no Frequency Multipliers: Coefficient (Hz) Cap. (µ F) 1~5.6 6.8~180 220~</condition>	ied at max .C voltage	kimum oper e and the pe	ating temp	erature	t exceed the

SAMXON

5. It refers to the latest document of "Environment-related Substances standard" (WI-HSPM-QA-072).

	Substances		
	Cadmium and cadmium compounds		
Heavy metals	Lead and lead compounds		
Treavy metals	Mercury and mercury compounds		
	Hexavalent chromium compounds		
	Polychlorinated biphenyls (PCB)		
Chloinated	Polychlorinated naphthalenes (PCN)		
organic	Polychlorinated terphenyls (PCT)		
compounds	Short-chain chlorinated paraffins(SCCP)		
	Other chlorinated organic compounds		
	Polybrominated biphenyls (PBB)		
Brominated	Polybrominated diphenylethers(PBDE) (including		
organic	decabromodiphenyl ether[DecaBDE])		
compounds	Other brominated organic compounds		
Tributyltin comp	ounds(TBT)		
Triphenyltin con	pounds(TPT)		
Asbestos			
Specific azo com	apounds		
Formaldehyde			
Beryllium oxide			
Beryllium copp	er		
Specific phthalat	es (DEHP,DBP,BBP,DINP,DIDP,DNOP,DNHP)		
Hydrofluorocarb	on (HFC), Perfluorocarbon (PFC)		
Perfluorooctane	sulfonates (PFOS)		
Specific Benzotr	iazole		

Version	01		Page	11
---------	----	--	------	----

SAMXON

Attachment: Application Guidelines

1.Circuit Design

- 1.1 Operating Temperature and Frequency Electrolytic capacitor electrical parameters are normally specified at 20°C temperature and 120Hz frequency. These parameters vary with changes in temperature and frequency. Circuit designers should take these changes into consideration.
- (1) Effects of operating temperature on electrical parameters
 a) At higher temperatures, leakage current and capacitance increase while equivalent series resistance (ESR) decreases.
 - b) At lower temperatures, leakage current and capacitance decrease while equivalent series resistance (ESR) increases.
- (2) Effects of frequency on electrical parameters
 - a) At higher frequencies capacitance and impedance decrease while tand increases.
 - b) At lower frequencies, ripple current generated heat will rise due to an increase in equivalent series resistance (ESR).
- 1.2 Operating Temperature and Life Expectancy See the file: Life calculation of aluminum electrolytic capacitor
- 1.3 Common Application Conditions to Avoid

The following misapplication load conditions will cause rapid deterioration to capacitor electrical parameters. In addition, rapid heating and gas generation within the capacitor can occur causing the pressure relief vent to operate and resultant leakage of electrolyte. Under Leaking electrolyte is combustible and electrically conductive.

(1) Reverse Voltage

DC capacitors have polarity. Verify correct polarity before insertion. For circuits with changing or uncertain polarity, use DC bipolar capacitors. DC bipolar capacitors are not suitable for use in AC circuits.

(2) Charge / Discharge Applications

Standard capacitors are not suitable for use in repeating charge / discharge applications. For charge / discharge applications consult us and advise actual conditions.

(3) Over voltage

Do not apply voltages exceeding the maximum specified rated voltage. Voltages up to the surge voltage rating are acceptable for short periods of time. Ensure that the sum of the DC voltage and the superimposed AC ripple voltage does not exceed the rated voltage.

(4) Ripple Current

Do not apply ripple currents exceeding the maximum specified value. For high ripple current applications, use a capacitor designed for high ripple currents or contact us with your requirements. Ensure that allowable ripple currents superimposed on low DC bias voltages do not cause reverse voltage conditions.

- 1.4 Using Two or More Capacitors in Series or Parallel
- (1) Capacitors Connected in Parallel

The circuit resistance can closely approximate the series resistance of the capacitor causing an imbalance of ripple current loads within the capacitors. Careful design of wiring methods can minimize the possibility of excessive ripple currents applied to a capacitor.

(2) Capacitors Connected in Series

Normal DC leakage current differences among capacitors can cause voltage imbalances. The use of voltage divider shunt resistors with consideration to leakage current can prevent capacitor voltage imbalances.

- 1.5 Capacitor Mounting Considerations
- (1) Double Sided Circuit Boards

Avoid wiring pattern runs, which pass between the mounted capacitor and the circuit board.

When dipping into a solder bath, excess solder may collect under the capacitor by capillary action and short circuit the anode and cathode terminals.

(2)Circuit Board Hole Positioning

The vinyl sleeve of the capacitor can be damaged if solder passes through a lead hole for subsequently processed parts. Special care when locating hole positions in proximity to capacitors is recommended.

(3)Circuit Board Hole Spacing

The circuit board holes spacing should match the capacitor lead wire spacing within the specified tolerances. Incorrect spacing can cause excessive lead wire stress during the insertion process. This may result in premature capacitor failure due to short or open circuit, increased leakage current, or electrolyte leakage.

(4) Clearance for Case Mounted Pressure Relief vents

Capacitors with case mounted pressure relief vents require sufficient clearance to allow for proper vent operation. The minimum clearances are dependent on capacitor diameters as proper vent operation. The minimum clearances are dependent on capacitor diameters as follows.

 $\phi 6.3 \text{-} \phi 16 \text{mm:} 2 \text{mm minimum, } \phi 18 \text{-} \phi 35 \text{mm:} 3 \text{mm minimum, } \phi 40 \text{mm or greater:} 5 \text{mm minimum.}$

- (5) Clearance for Seal Mounted Pressure Relief Vents
- A hole in the circuit board directly under the seal vent location is required to allow proper release of pressure.

Version 01		Page	12
------------	--	------	----

SAMXON

	Wiring Near the Pressure Relief Vent Avoid locating high voltage or high current wiring or circuit board paths above the pressure relief vent. Flammable, high temperature gas exceeding 100°C may be released which could dissolve the wire insulation and ignite. Circuit Board patterns Under the Capacitor
. ,	Avoid circuit board runs under the capacitor as electrolyte leakage could cause an electrical short. Screw Terminal Capacitor Mounting
(-)	Do not orient the capacitor with the screw terminal side of the capacitor facing downwards. Tighten the terminal and mounting bracket screws within the torque range specified in the specification.
1.6	Electrical Isolation of the Capacitor Completely isolate the capacitor as follows.
	Between the cathode and the case (except for axially leaded B types) and between the anode terminal and other circuit paths Between the extra mounting terminals (on T types) and the anode terminal, cathode terminal, and other circuit paths.
1.7	The Product endurance should take the sample as the standard.
1.8	If conduct the load or shelf life test, must be collect date code within 6 months products of sampling.
1.9	Capacitor Sleeve The vinyl sleeve or laminate coating is intended for marking and identification purposes and is not meant to electrically insulate the capacitor. The sleeve may split or crack if immersed into solvents such as toluene or xylene, and then exposed to high temperatures.
	CAUTION! Always consider safety when designing equipment and circuits. Plan for worst case failure modes such as short circuits and open circuits which could occur during use. (1) Provide protection circuits and protection devices to allow safe failure modes. (2) Design redundant or secondary circuits where possible to assure continued operation in case of main circuit failure.
20	apacitor Handling Techniques
2.1	Considerations Before Using
	Capacitors have a finite life. Do not reuse or recycle capacitors from used equipment. Transient recovery voltage may be generated in the capacitor due to dielectric absorption. If required, this voltage can be discharged
(3)	with a resistor with a value of about $1k\Omega$. Capacitors stored for long periods of time may exhibit an increase in leakage current. This can be corrected by gradually applying
	rated voltage in series with a resistor of approximately $1k\Omega$. If capacitors are dropped, they can be damaged mechanically or electrically. Avoid using dropped capacitors. Dented or crushed capacitors should not be used. The seal integrity can be compromised and loss of electrolyte / shortened life can
	result.
(1) (2)	Capacitor Insertion Verify the correct capacitance and rated voltage of the capacitor. Verify the correct polarity of the capacitor before inserting.
(4)	Verify the correct hole spacing before insertion (land pattern size on chip type) to avoid stress on the terminals. Ensure that the auto insertion equipment lead clinching operation does not stress the capacitor leads where they enter the seal of the capacitor.
	For chip type capacitors, excessive mounting pressure can cause high leakage current, short circuit, or disconnection.
(1) (2) I (3) I	Manual Soldering Observe temperature and time soldering specifications or do not exceed temperatures of 400 °C for 3 seconds or less. I lead wires must be formed to meet terminal board hole spacing, avoid stress on the lead wire where it enters the capacitor seal. I a soldered capacitor must be removed and reinserted, avoid excessive stress to the capacitor leads. Avoid touching the tip of the soldering iron to the capacitor, to prevent melting of the vinyl sleeve.
(1) I (2) C	Flow Soldering Do not immerse the capacitor body into the solder bath as excessive internal pressure could result. Deserve proper soldering conditions (temperature, time, etc.) Do not exceed the specified limits. Do not allow other parts or components to touch the capacitor during soldering.
2.5	Other Soldering Considerations

Rapid temperature rises during the preheat operation and resin bonding operation can cause cracking of the capacitor vinyl sleeve. For heat curing, do not exceed 150° C for a maximum time of 2 minutes.

Version	01		Page	13
---------	----	--	------	----

- 2.6 Capacitor Handling after Solder
- (1). Avoid movement of the capacitor after soldering to prevent excessive stress on the lead wires where they enter the seal.
- (2). Do not use capacitor as a handle when moving the circuit board assembly.
- (3). Avoid striking the capacitor after assembly to prevent failure due to excessive shock.
- 2.7 Circuit Board Cleaning
- (1) Circuit boards can be immersed or ultrasonically cleaned using suitable cleaning solvents for up 5 minutes and up to 60°C maximum temperatures. The boards should be thoroughly rinsed and dried. The use of ozone depleting cleaning agents is not recommended in the interest of protecting the environment.
- (2) Avoid using the following solvent groups unless specifically allowed for in the specification;

Halogenated cleaning solvents: except for solvent resistant capacitor types, halogenated solvents can permeate the seal and cause internal capacitor corrosion and failure. For solvent resistant capacitors, carefully follow the temperature and time requirements of the specification. 1-1-1 trichloroethane should never be used on any aluminum electrolytic capacitor.

- Alkali solvents : could attack and dissolve the aluminum case.
- Petroleum based solvents: deterioration of the rubber seal could result.
- Xylene : deterioration of the rubber seal could result. Acetone
 - : removal of the ink markings on the vinyl sleeve could result.
- (3) A thorough drying after cleaning is required to remove residual cleaning solvents which may be trapped between the capacitor and the circuit board. Avoid drying temperatures, which exceed the maximum rated temperature of the capacitor.
- (4) Monitor the contamination levels of the cleaning solvents during use by electrical conductivity, pH, specific gravity, or water content. Chlorine levels can rise with contamination and adversely affect the performance of the capacitor. Please consult us for additional information about acceptable cleaning solvents or cleaning methods.

2.8 Mounting Adhesives and Coating Agents

When using mounting adhesives or coating agents to control humidity, avoid using materials containing halogenated solvents. Also, avoid the use of chloroprene based polymers. After applying adhesives or coatings, dry thoroughly to prevent residual solvents from being trapped between the capacitor and the circuit board.

3. Precautions for using capacitors

3.1 Environmental Conditions

- Capacitors should not be stored or used in the following environments.
- (1) Temperature exposure above the maximum rated or below the minimum rated temperature of the capacitor.
- (2) Direct contact with water, salt water, or oil.
- (3) High humidity conditions where water could condense on the capacitor.
- (4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid chlorine, or ammonia.
- (5) Exposure to ozone, radiation, or ultraviolet rays.
- (6) Vibration and shock conditions exceeding specified requirements.

3.2 Electrical Precautions

- (1) Avoid touching the terminals of the capacitor as possible electric shock could result. The exposed aluminum case is not insulated and could also cause electric shock if touched.
- (2) Avoid short circuit the area between the capacitor terminals with conductive materials including liquids such as acids or alkaline solutions.

4. Emergency Procedures

- (1) If the pressure relief vent of the capacitor operates, immediately turn off the equipment and disconnect form the power source. This will minimize additional damage caused by the vaporizing electrolyte.
- (2) Avoid contact with the escaping electrolyte gas which can exceed 100° C temperatures.
- If electrolyte or gas enters the eye, immediately flush the eyes with large amounts of water.
 - If electrolyte or gas is ingested by month, gargle with water.
 - If electrolyte contacts the skin, wash with soap and water.

5. Long Term Storage

Leakage current of a capacitor increases with long storage times. The aluminum oxide film deteriorates as a function of temperature and time. If used without reconditioning, an abnormally high current will be required to restore the oxide film. This current surge could cause the circuit or the capacitor to fail. After one year, a capacitor should be reconditioned by applying rated voltage in series with a 1000Ω , current limiting resistor for a time period of 30 minutes. If the expired date of products date code is over eighteen months, the products should be return to confirmation.

5.1 Environmental Conditions

The capacitor shall be not use in the following condition:

(1) Temperature exposure above the maximum rated or below the minimum rated temperature of the capacitor.

(2) Direct contact with water, salt water, or oil.

(3) High humidity conditions where water could condense on the capacitor.

(4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid, chlorine, or ammonia.

(5) Exposure to ozone, radiation, or ultraviolet rays.

(6) Vibration and shock conditions exceeding specified requirements.

6. Capacitor Disposal

When disposing of capacitors, use one of the following methods.

Incinerate after crushing the capacitor or puncturing the can wall (to prevent explosion due to internal pressure rise).

Capacitors should be incinerated at high temperatures to prevent the release of toxic gases such as chlorine from the polyvinyl chloride sleeve, etc.

Dispose of as solid waste.

NOTE: Local laws may have specific disposal requirements, which must be followed.

Version 01 Page 15
